

# LoRaWAN® Solenoid Valve Controller

**UC51x Series** 

**Communication Protocol** 



## **Revision History**

| Date          | Doc Version | Description                        |
|---------------|-------------|------------------------------------|
| Feb. 23, 2021 | V 1.0       | Initial version                    |
| Dec. 1, 2021  | V 1.1       | Valve control sequence supports 00 |

## **Contents**

| 1. Overview            | 2 |
|------------------------|---|
| 2. Uplink Payload      | 3 |
| 2.1 Device Information |   |
| 2.2 Sensor Data        | 3 |
| 3. Downlink Payload    | 4 |

### 1. Overview

UC51x Series use the standard Milesight IoT payload format based on IPSO. All data are based on following format:

| Channel1 | Type1  | Data1   | Channel2 | Type2  | Data2   | Channel 3 |  |
|----------|--------|---------|----------|--------|---------|-----------|--|
| 1 Byte   | 1 Byte | N Bytes | 1 Byte   | 1 Byte | M Bytes | 1 Byte    |  |

| Channel | Description                        |
|---------|------------------------------------|
| 01      | Battery                            |
| 03      | Valve 1                            |
| 04      | Pulse 1                            |
| 05      | Valve 2                            |
| 06      | Pulse 2                            |
| ff      | Device information/Control package |

#### Note:

- 1) All explanations and examples in this document are based on HEX format.
- 2) For all Milesight IoT decoder examples please find files on <a href="https://github.com/Milesight-IoT/SensorDecoders">https://github.com/Milesight-IoT/SensorDecoders</a>



# 2. Uplink Payload

Uplink payloads of UC51x Series are made up of device information and sensor data.

## 2.1 Device Information

UC51x series report basic device information of device everytime joining the network.

| Channel | Туре                  | Data Size/Byte | Description   |                      |
|---------|-----------------------|----------------|---------------|----------------------|
|         | 01(Protocol Version)  | 1              | 01=>V1        |                      |
|         | 09 (Hardware Version) | 2              | 02 10=>V2.1   |                      |
|         | 0a(Software Version)  | 2              | 01 01=>V1.1   |                      |
| ff      | 0b (Power On)         | 1              | Device is on  |                      |
|         |                       |                | _             | 00=Class A, 01=Class |
|         | 0f(Device Type)       | 1              | B, 02=Class C |                      |
|         | 16 (Device SN)        | 8              | 16 digits     |                      |

#### **Examples:**

| ff 0b ff ff 01 01 ff 16 64 15 a5 15 85 07 00 20 ff 09 01 00 ff 0a 01 08 ff 0f 00 |                             |                            |         |                          |                 |  |
|----------------------------------------------------------------------------------|-----------------------------|----------------------------|---------|--------------------------|-----------------|--|
| Channel                                                                          | Туре                        | Value                      | Channel | Туре                     | Value           |  |
| ff                                                                               | 0b<br>(Power On)            | ff<br>(reserved)           | ff      | 01<br>(Protocol Version) | 01(V1)          |  |
| Channel                                                                          | Туре                        | Value                      | Channel | Туре                     | Value           |  |
| ff                                                                               | 16<br>(Device SN)           | 64 15 a5 15<br>85 07 00 20 | ff      | 09<br>(Hardware version) | 0100<br>(V1.0)  |  |
| Channel                                                                          | Туре                        | Value                      | Channel | Туре                     | Value           |  |
| ff                                                                               | 0a<br>(Software<br>version) | 0108<br>(V1.8)             | ff      | 0f<br>(Device Type)      | 00<br>(Class A) |  |

#### 2.2 Sensor Data

UC51x series report sensor data according to reporting interval (10min by default). Battery level is reported every 6 hours for UC511 and 12 hours for UC512.

| Channel     | Туре              | Data Size/Byte | Description       |
|-------------|-------------------|----------------|-------------------|
| 01          | 75(Battery Level) | 1              | Unit: %           |
| 03(Valve 1) | 01(Valve)         | 1              | 00=close, 01=open |
| 04(Pulse 1) | c8(Counter)       | 4              | Unsigned          |



| 05(Valve 2) | 01(Valve)   | 1 | 00=close, 01=open |
|-------------|-------------|---|-------------------|
| 06(Pulse 2) | c8(Counter) | 4 | Unsigned          |

## **Examples:**

| 01              | 01 75 64 03 01 01 04 c8 06 00 00 05 01 00 06 c8 00 00 00 00 |                                  |             |               |           |  |
|-----------------|-------------------------------------------------------------|----------------------------------|-------------|---------------|-----------|--|
| Channel         | Туре                                                        | Value                            | Channel     | Туре          | Value     |  |
| 01              | 75<br>(Battery)                                             | 64 =><br>100%                    | 03(Valve 1) | 01<br>(Valve) | 01=>Open  |  |
| Channel         | Туре                                                        | Value                            | Channel     | Туре          | Value     |  |
| 04<br>(Pulse 1) | c8(Pulse<br>Counter)                                        | 06 00 00<br>00=>00 00<br>00 06=6 | 05(Valve 2) | 01<br>(Valve) | 00=>Close |  |
| Channel         | Туре                                                        | Value                            |             |               |           |  |
| 06<br>(Pulse 2) | c8(Pulse<br>Counter)                                        | 06 00 00<br>00=>00 00<br>00 00=0 |             |               |           |  |

# 3. Downlink Payload

Downlink is used for controlling the UC51x via network server remotely. Downlink port (Application port) is 85 by default and can be configured via ToolBox.

### 3.1 Valve Control

#### **Basic format:**

| Channel | Туре | Control Field | Sequence         | Time Control<br>(Option) | Flow Control<br>(Option) |
|---------|------|---------------|------------------|--------------------------|--------------------------|
| ff      | 1d   | 1 Byte        | 1 Byte           | 3 Bytes                  | 4 Bytes                  |
| 11      | Tu   | гъусе         | (01 to ff or 00) | (Unit: s)                | 4 bytes                  |

### **Control Field:**

| Bit         | 7                                              | 6                                              | 5                               | 4-2      | 1-0                      |
|-------------|------------------------------------------------|------------------------------------------------|---------------------------------|----------|--------------------------|
| Description | 0: Disable time control 1: Enable time control | 0: Disable flow control 1: Enable flow control | 0: Valve close<br>1: Valve open | Reserved | 0: Valve 1<br>1: Valve 2 |

#### **Examples:**

| Examples.                        |                                                    |
|----------------------------------|----------------------------------------------------|
| Command                          | Description                                        |
| ff 1d 20 00                      | Valve 1 open                                       |
| ff 1d 00 00                      | Valve 1 close                                      |
| ff 1d 21 00                      | Valve 2 open                                       |
| ff 1d 01 00                      | Valve 2 close                                      |
| ff 1d a0 00 3c 00 00             | Valve 1 open for 60 seconds                        |
| ff 1d 80 00 3c 00 00             | Valve 1 close for 60 seconds                       |
| ff 1d a1 00 3c 00 00             | Valve 2 open for 60 seconds                        |
| ff 1d 81 00 3c 00 00             | Valve 2 close for 60 seconds                       |
| ff 1d 60 00 06 00 00 00          | Valve 1 open until pulse 1 is 6                    |
| ff 1d 61 00 10 00 00 00          | Valve 2 open until pulse 2 is 16                   |
| ff 1d e0 00 3c 00 00 06 00 00 00 | Valve 1 open for 60 seconds or until pulse 1 is 6  |
| ff 1d e1 00 3c 00 00 10 00 00 00 | Valve 2 open for 60 seconds or until pulse 2 is 16 |

#### Note:

- 1) If you set the sequence as 01 to ff, the sequence should be increased after it has been used in one command sent to devices. For example, if you use command ff 1d 20 01 (sequence 01) to control the valve successfully, the next command should be ff 1d 20 02 (sequence 02). Wrong sequence will cause command invalid.
- 2) If the sequence is up to ff(255), please use sequence beginning as 01.
- 3) There are different replies when sending invalid or valid commands. For example, if you send command ff 1d 21 01,

Valid reply: fe 1d 21 01+ 05 01 01 06 c8 00 00 00 00

Invalid reply: fe 1d 21 01



# 3.2 Reporting Interval Control

| Channel | Туре                        | Description      |
|---------|-----------------------------|------------------|
| ff      | 03 (Set Reporting Interval) | 2 Bytes, unit: s |

### Example:

| ff 03 b0 04 |                  |                  |
|-------------|------------------|------------------|
| Channel     | Туре             | Value            |
| ff          | 03(Set Reporting | b0 04 => 04 b0 = |
| 11          | Interval)        | 1200s=20 minutes |

-END-